



1

# Regulation of inorganic carbon acquisition in a red tide alga (Skeletonema

## costatum): the importance of phosphorus availability

Guang Gao<sup>a,b</sup>, Jianrong Xia<sup>a\*</sup>, Jinlan Yu<sup>a</sup>, Jiale Fan<sup>b</sup>, Xiaopeng Zeng<sup>a</sup>

<sup>a</sup>School of Environmental Science and Engineering, Guangzhou University,

Guangzhou, 510006, China

<sup>b</sup>Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology,

Lianyungang, 222005, China

\*Corresponding author, Email: jrxia@gzhu.edu.cn; Phone: +86 (0)20 39366941; Fax:

+86 (0)20 39366949



2

## 1 Abstract:

| 2  | S. costatum is a common bloom-forming diatom and encounters eutrophication and severe                                         |
|----|-------------------------------------------------------------------------------------------------------------------------------|
| 3  | CO <sub>2</sub> limitation during red tides. However, little is known regarding the role of phosphorus in                     |
| 4  | modulating inorganic carbon acquisition in S. costatum, particularly under CO <sub>2</sub> limitation                         |
| 5  | conditions. We cultured <i>S. costatum</i> under five phosphate levels (0.05, 0.25, 1, 4, 10 $\mu$ mol L <sup>-1</sup> )      |
| 6  | and then treated it with two $CO_2$ conditions (2.8 and 12.6 $\mu$ mol L <sup>-1</sup> ) for two hours. The lower             |
| 7  | CO <sub>2</sub> reduced net photosynthetic rate at lower phosphate levels (< 4 $\mu$ mol L <sup>-1</sup> ) but did not        |
| 8  | affect it at higher phosphate levels (4 and 10 $\mu$ mol L <sup>-1</sup> ). In contrast, the lower CO <sub>2</sub> induced    |
| 9  | higher dark respiration rate at lower phosphate levels (0.05 and 0.25 $\mu mol \ L^{\text{-1}}$ ) and did not                 |
| 10 | affect it at higher phosphate levels (> 1 $\mu$ mol L <sup>-1</sup> ). The lower CO <sub>2</sub> did not change rETR at       |
| 11 | lower phosphate levels (0.05 and 0.25 $\mu$ mol L <sup>-1</sup> ) and increased it at higher phosphate levels (>              |
| 12 | 1 µmol L <sup>-1</sup> ). Photosynthetic CO <sub>2</sub> affinity ( $K_{0.5}$ ) decreased with phosphate levels. The lower    |
| 13 | CO <sub>2</sub> did not affect $K_{0.5}$ at 0.05 µmol L <sup>-1</sup> phosphate but reduced it at the other phosphate levels. |
| 14 | Activity of extracellular carbonic anhydrase was dramatically induced by the lower $\text{CO}_2$ at                           |
| 15 | phosphate replete conditions (> 0.25 $\mu mol \ L^{\text{-1}}$ ) and the same pattern also occurred for redox                 |
| 16 | activity of plasma membrane. Direct HCO <sub>3</sub> <sup>-</sup> use was induced when phosphate concentration is             |
| 17 | more than 1 $\mu$ mol L <sup>-1</sup> . This study indicates the essential role of P in regulating inorganic                  |
| 18 | carbon acquisition and CO <sub>2</sub> concentrating mechanisms (CCMs) in S. costatum and sheds light                         |
| 19 | on how bloom-forming algae cope with carbon limitation during the development of red tides.                                   |
| 20 | Keywords: carbonic anhydrase; CO <sub>2</sub> concentrating mechanisms; pH compensation point;                                |
| 21 | photosynthesis; redox activity; respiration                                                                                   |



3

### 22 **1. Introduction**

| 23 | Diatoms are unicellular photosynthetic microalgae that can be found worldwide in                                 |
|----|------------------------------------------------------------------------------------------------------------------|
| 24 | freshwater and oceans. Marine diatoms account for 75% of the primary productivity for                            |
| 25 | coastal and other nutrient-rich zones and approximately 20% of global primary production                         |
| 26 | (Field et al., 1998; Falkowski, 2012), hence playing a vital role in marine biological carbon                    |
| 27 | pump as well as the biogeochemical cycling of important nutrients, such as nitrogen and                          |
| 28 | silicon (Nelson et al., 1995; Moore et al., 2013; Young & Morel, 2015). Diatoms usually                          |
| 29 | dominate the phytoplankton communities and form large-scale blooms in nutrient-rich zones                        |
| 30 | and upwelling regions (Bruland et al., 2001; Anderson et al., 2008; Barton et al., 2016).                        |
| 31 | Nutrient enrichment is considered as a compelling factor that triggers algal blooms albeit the                   |
| 32 | occurrence of diatom blooms may be modulated by other environmental factors, such as                             |
| 33 | temperature, light intensity, salinity etc. (Smetacek & Zingone, 2013; Jeong et al., 2015).                      |
| 34 | When inorganic nitrogen and phosphorus are replete, diatoms could out-compete                                    |
| 35 | chrysophytes, raphidophytes and dinoflagellates (Berg et al., 1997; Jeong et al., 2015; Barton                   |
| 36 | et al., 2016) and domainate algal blooms due to their quicker nutrient uptake and growth rate.                   |
| 37 | In normal natural seawater (pH 8.1, salinity 35), HCO3 <sup>-</sup> is the majority (~90%) of total              |
| 38 | dissolved inorganic carbon (DIC, 2.0–2.2 mM). CO <sub>2</sub> (1%, 10–15 $\mu M$ ), which is the only            |
| 39 | direct carbon source that can be assimilated by all photosynthetic organisms, only accounts                      |
| 40 | for 1% of total dissolved inorganic carbon. Diatoms' ribulose-1,5-bisphosphate                                   |
| 41 | carboxylase/oxygenase (RUBISCO) has a relatively low affinity for $\text{CO}_2$ and is commonly                  |
| 42 | less than half saturated under current CO <sub>2</sub> levels in seawater (Hopkinson & Morel, 2011),             |
| 43 | suggesting that CO <sub>2</sub> is limited for marine diatoms' carbon fixation. To cope with the CO <sub>2</sub> |



4



| 44 | limitation in seawater and maintain a high carbon fixation rate under the low CO <sub>2</sub> conditions,                      |
|----|--------------------------------------------------------------------------------------------------------------------------------|
| 45 | diatoms have evolved various inorganic carbon acquisition pathways and CO <sub>2</sub> concentrating                           |
| 46 | mechanisms, for instance, active transport of HCO3, the passive influx of CO2, multiple                                        |
| 47 | carbon anhydrase, assumed C4-type pathway, etc. (Hopkinson & Morel, 2011; Hopkinson et                                         |
| 48 | al., 2016). S. costatum is a worldwide diatom species that can be found from equatorial to                                     |
| 49 | polar waters. It usually dominates large-scale algal blooms in eutrophic seawaters (Wang,                                      |
| 50 | 2002; Li et al., 2011). When blooms occur, seawater pH increases and CO <sub>2</sub> decreases. For                            |
| 51 | instance, pH level in the surface waters of the eutrophic Mariager Fjord, Denmark, could be                                    |
| 52 | up to 9.75 during algal blooms (Hansen, 2002). Consequently, S. costatum experiences very                                      |
| 53 | severe CO <sub>2</sub> limitation when blooms occur. To deal with it, S. costatum has developed multiple                       |
| 54 | CCMs (Nimer et al., 1998; Rost et al., 2003). However, contrasting findings were reported.                                     |
| 55 | Nimer et al. (1998) documented that extracellular carbonic anhydrase activity in S. costatum                                   |
| 56 | was only induced when CO <sub>2</sub> concentration was less than 5 $\mu$ mol L <sup>-1</sup> while Rost <i>et al.</i> (2003)  |
| 57 | reported that activity of extracellular CA could be detected even when $_{P}CO_{2}$ is 1800 µatm.                              |
| 58 | Chen and Gao (2004) showed that in <i>S. costatum</i> had little capacity in direct HCO <sub>3</sub> <sup>-</sup> utilization. |
| 59 | On the other hand, Rost et al. (2003) demonstrated that this species could take up CO <sub>2</sub> and                         |
| 60 | $HCO_3^{-}$ simultaneously.                                                                                                    |
| 61 | Phosphorus (P) is an indispensable element for all living organisms, serving as an integral                                    |
| 62 | component of lipids, nucleic acids, ATP and a diverse range of other metabolites. Levels of                                    |

bioavailable phosphorus are very low in many ocean environments and phosphorus 63

enrichment can commonly increase algal growth and marine primary productivity in the 64

worldwide oceans (Davies & Sleep, 1989; Müller & Mitrovic, 2015; Lin et al., 2016). Due to 65



5



| 66 | the essential role of phosphorus, extensive studies have been conducted to investigate the            |
|----|-------------------------------------------------------------------------------------------------------|
| 67 | effect of phosphorus on photosynthetic performances (Geider et al., 1998; Liu et al., 2012;           |
| 68 | Beamud et al., 2016), growth (Jiang et al., 2016; Reed et al., 2016; Mccall et al., 2017),            |
| 69 | phosphorus acquisition, utilization and storage (Lin et al., 2016 and the references therein).        |
| 70 | Some studies show the relationship between phosphorus availability and inorganic carbon               |
| 71 | acquisition in green algae (Beardall et al., 2005; Hu & Zhou, 2010). In terms of S. costatum,         |
| 72 | studies regarding the inorganic carbon acquisition in S. costatum focus on its response to            |
| 73 | variation of CO <sub>2</sub> availability. The role of phosphorus in S. costatum's CCMs remains       |
| 74 | unknown. Based on the connection between phosphorus and carbon metabolism in diatoms                  |
| 75 | (Brembu et al., 2017), we hypothesize that phosphorus enrichment could enhance the capacity           |
| 76 | of inorganic carbon utilization and hence maintain high rates of photosynthesis and growth in         |
| 77 | S. costatum under CO <sub>2</sub> limitation conditions. In the present study, we investigated the    |
| 78 | inorganic acquisition pathways, photosynthetic CO <sub>2</sub> affinity, carbonic anhydrase activity, |
| 79 | redox activity of plasma membrane, and photosynthetic rate under five levels of phosphate             |
| 80 | and two levels of $CO_2$ conditions to test this hypothesis. Our study would provide helpful          |
| 81 | insights into how bloom-forming diatoms overcome CO <sub>2</sub> limitation to maintain a quick       |
| 82 | growth rate during red tides.                                                                         |
| 83 | 2. Materials and Methods                                                                              |
| 84 | 2.1. Culture conditions                                                                               |

S. costatum (Grev.) Cleve from Jinan University, China, was cultured in f/2 artificial
seawater with five phosphate levels (0.05, 0.25, 1, 4, 10 μmol L<sup>-1</sup>) by adding different
amounts of NaH<sub>2</sub>PO<sub>4</sub> 2H<sub>2</sub>O. The cultures were carried out semi-continuously at 20°C for



6



| 88  | seven days. The light irradiance was set 200 $\mu$ mol m <sup>-2</sup> s <sup>-1</sup> , with a light and dark period of 12:              |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 89  | 12. The cultures were aerated with ambient air $(0.3 \text{ Lmin}^{-1})$ to maintain the pH around 8.2.                                   |
| 90  | The cells during exponential phase were collected and rinsed twice with DIC-free seawater                                                 |
| 91  | that was made according to Xu et al. (2017). Afterwards, cells were resuspended in fresh                                                  |
| 92  | media with two levels of pH (8.2 and 8.7, respectively corresponding to ambient $CO_2$ (12.6                                              |
| 93  | $\mu$ mol L <sup>-1</sup> , AC) and low CO <sub>2</sub> (2.8 $\mu$ mol L <sup>-1</sup> , LC) under corresponding phosphate levels for two |
| 94  | hours before the following measurements, with a cell density of $1.0 \times 10^6 \text{ mL}^{-1}$ . This transfer                         |
| 95  | aimed to investigate the effects of phosphate on DIC acquisition under a CO <sub>2</sub> limitation                                       |
| 96  | condition. The pH of 8.7 was chosen considering that it is commonly used as a $\rm CO_2$ limitation                                       |
| 97  | condition (Nimer et al., 1998; Chen & Gao, 2004) and also occurs during algal bloom                                                       |
| 98  | (Hansen, 2002). Two hours should be enough to activate CCMs in S. costatum (Nimer et al.,                                                 |
| 99  | 1998). All experiments were conducted in triplicates.                                                                                     |
| 100 | 2.2.Chlorophyll fluorescence measurement                                                                                                  |
| 101 | Chlorophyll fluorescence was measured with a pulse modulation fluorometer                                                                 |
| 102 | (PAM-2100, Walz, Germany). The measuring light and actinic light were 0.01 and 200 $\mu$ mol                                              |
| 103 | photons $m^{-2} s^{-1}$ , respectively. The saturating pulse was set 4,000 µmol photons $m^{-2} s^{-1}$ (0.8 s).                          |

- 104 Relative electron transport (rETR,  $\mu$ mol e<sup>-</sup>m<sup>-2</sup> s<sup>-1</sup>) = (F<sub>M</sub>' F<sub>t</sub>) / F<sub>M</sub>' × 0.5 × PFD, where F<sub>M</sub>' 105 is the maximal fluorescence levels from algae after in light, Ft is the fluorescence at an 106 excitation level and PFD is the actinic light density.
- 107 2.3. Estimation of photosynthetic oxygen evolution and respiration

The net photosynthetic rate and respiration rate of *S. costatum* were measured using a
Clark-type oxygen electrode (YSI Model 5300, USA) that was held in a circulating water bath



7



| 110 | (Cooling Circulator; Cole Parmer, Chicago, IL, USA) to keep the setting temperature (20°C).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 111 | Five mL of samples were transferred to the oxygen electrode cuvette and were stirred during                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 112 | measurement. The light intensity and temperature were maintained as the same as that in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 113 | growth condition. The illumination was provided by a halogen lamp. The increase of oxygen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 114 | content in seawater within five minutes was defined as net photosynthetic rate. To measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 115 | dark respiration rate, the samples were placed in darkness and the decrease of oxygen content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 116 | within ten minutes was defined as dark respiration rate. Net photosynthetic rate and dark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 117 | respiration rate were presented as $\mu$ mol O <sub>2</sub> (10 <sup>9</sup> cells) <sup>-1</sup> h <sup>-1</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 118 | To obtain the curve of net photosynthetic rate versus DIC, seven levels of DIC $(0, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2$ |
| 119 | 0.5, 1, 2, and 4 mM) were made by adding different amounts of $NaHCO_3$ to the Tris buffered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 120 | DIC-free seawater. The algal samples were washed twice with DIC-free seawater before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 121 | transferring to the various DIC solutions. Photosynthetic rates at different DIC levels were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 122 | measured under saturating irradiance of 400 $\mu mol$ photons $m^{-2}~s^{-1}$ and growth temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 123 | The algal samples were allowed to equilibrate for 2–3 min at each DIC level during which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 124 | period a linear change in oxygen concentration was obtained and recorded. The parameter,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 125 | photosynthetic half saturation constant ( $K_{0.5}$ , i.e., the DIC concentration required to give half                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 126 | of Ci-saturated maximum rate of photosynthetic O <sub>2</sub> evolution), was calculated from the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 127 | Michaelis-Menten kinetics equation (Caemmerer and Farquhar 1981): $V = V_{max} \times [S] / (K_{0.5} + C_{max})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 128 | [S]), where V is the real-time photosynthetic rate, $V_{max}$ is maximum photosynthetic rate and [S]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 129 | is the DIC concentration. $K_{0.5}$ for CO <sub>2</sub> was calculated via CO2SYS (Pierrot <i>et al.</i> , 2006),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 130 | using the equilibrium constants of K1 and K2 for carbonic acid dissociation (Roy et al., 1993)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

and the KSO<sub>4</sub><sup>-</sup> dissociation constant from Dickson (1990). Total alkalinity and pH were the





- 8
- 132 two input parameters. Seawater pH was measured with a pH meter (pH 700, Eutech
- 133 Instruments, Singapore) and total alkalinity was measured by titrations.
- 134 2.4. Measurement of photosynthetic pigment
- 135 To determine the photosynthetic pigment (Chl *a*) content, 50 mL of culture were filtered
- 136 on a Whatman GF/F filter, extracted in 5 mL of 90% acetone for 12 h at 4°C, and centrifuged
- 137 (3, 000 g, 5 min). The optical density of the supernatant was scanned from 200 to 700 nm
- 138 with a UV-VIS spectrophotometer (Shimadzu UV-1800, Kyoto, Japan). The concentration of
- 139 Chl *a* was calculated based on the optical density at 630 and 664 nm: Chl  $a = 11.47 \times OD_{664} 1000$
- 140  $0.40 \times OD_{630}$ , Chl  $c = 24.36 \times OD_{630} 3.73 \times OD_{664}$ .
- 141 2.5. Measurement of extracellular carbonic anhydrase activity
- 142 Carbonic anhydrase activity was assessed using the electrometric method (Gao *et al.*,
- 143 2009). Cells were harvested by centrifugation at 4, 000 g for five minutes at 20°C, washed
- 144 once and resuspended in 8 mL Na-barbital buffer (20 mM, pH 8.2). Five mL CO<sub>2</sub>-saturated
- icy distilled water was injected into the cell suspension, and the time required for a pH
- 146 decrease from 8.2 to 7.2 at 4°C was recorded. Extracellular carbonic anhydrase (CA<sub>ext</sub>)
- 147 activity was measured using intact cells. CA activity (E.U.) was calculated using the
- following formula: E.U. =  $10 \times (T_0 / T 1)$ , where  $T_0$  and T represent the time required for the
- 149 pH change in the absence or presence of the samples, respectively.
- 150 2.6. Measurement of redox activity in the plasma membrane
- 151 The redox activity of plasma membrane was assayed by incubating the cells with 500
- 152 µmol ferricyanide [K<sub>3</sub>Fe(CN)<sub>6</sub>] that cannot penetrate intact cells and has been used as an
- 153 external electron acceptor (Nimer et al., 1998; Wu & Gao, 2009). Stock solutions of





| 154 | $K_3$ Fe(CN) <sub>6</sub> were freshly prepared before use. Five mL of samples were taken after two hours                                                  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 155 | of incubation and centrifuged at 4000 g for 10 min (20°C). The absorbance of supernatant at                                                                |
| 156 | 420 nm was measured immediately to assess the rate of exofacial ferricyanide reduction                                                                     |
| 157 | (Nimer et al., 1998).                                                                                                                                      |
| 158 | 2.7. pH drift experiment                                                                                                                                   |
| 159 | To obtain the pH compensation point, the cells were transferred to sealed glass vials                                                                      |
| 160 | containing fresh medium (pH 8.2) with corresponding phosphate levels. The cell                                                                             |
| 161 | concentration for all treatments was 5.0 $\times10^5$ mL $^{-1}$ . The pH drift of the suspension was                                                      |
| 162 | monitored at 20 $^{\circ}\text{C}$ and 200 $\mu\text{mol}$ photons $\text{m}^{\text{-2}}\ \text{s}^{\text{-1}}$ light level. The pH compensation point was |
| 163 | obtained when there was no a further increase in pH.                                                                                                       |
| 164 | 2.8. Statistical analysis                                                                                                                                  |
| 165 | Results were expressed as means of replicates $\pm$ standard deviation and data were                                                                       |
| 166 | analyzed using the software SPSS v.21. The data from each treatment conformed to a normal                                                                  |
| 167 | distribution (Shapiro-Wilk, $P > 0.05$ ) and the variances could be considered equal (Levene's                                                             |
| 168 | test, $P > 0.05$ ). Two-way ANOVAs were conducted to assess the effects of CO <sub>2</sub> and phosphate                                                   |
| 169 | on differences net photosynthetic rate, dark respiration rate, ratio of net photosynthetic rate to                                                         |
| 170 | dark respiration rate, rETR, Chl a, $K_{0.5}$ , CA <sub>ext</sub> , reduction rate of ferricyanide, and pH                                                 |
| 171 | compensation point. Least Significant Difference (LSD) was conducted for post hoc                                                                          |
| 172 | investigation. Repeated measures ANOVAs were conducted to analyze the effects of DIC on                                                                    |
| 173 | net photosynthetic rate and the effect of incubation time on media pH in a closed system.                                                                  |
| 174 | Bonferroni was conducted for post hoc investigation. The threshold value for determining                                                                   |
| 175 | statistical significance was $P < 0.05$ .                                                                                                                  |





#### 176 **3. Results**

| 177 | 3.1. Effects of $CO_2$ and phosphate on photosynthetic and respiratory performances                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------|
| 178 | The net photosynthetic rate and dark respiration rate in S. costatum grown at various CO <sub>2</sub>                            |
| 179 | and phosphate concentrations were first investigated (Fig. 1). CO <sub>2</sub> interacted with phosphate                         |
| 180 | on net photosynthetic rate ( $F_{(4, 20)} = 3.662$ , $P = 0.021$ , Fig. 1a), with each factor having a main                      |
| 181 | effect ( $F_{(1, 20)} = 11.286$ , $P = 0.003$ for CO <sub>2</sub> , $F_{(4, 20)} = 157.925$ , $P < 0.001$ for phosphate). Post   |
| 182 | <i>hoc</i> LSD comparison ( $P = 0.05$ ) showed that LC reduced net photosynthetic rate when the                                 |
| 183 | phosphate levels was below 4 $\mu$ mol L <sup>-1</sup> but did not affect it at the higher phosphate levels.                     |
| 184 | Under AC, net photosynthetic rate increased with phosphate level and reached the plateau at 1                                    |
| 185 | µmol L <sup>-1</sup> phosphate. Under LC, net photosynthetic rate also increased with phosphate level                            |
| 186 | but did not hit the peak until 4 $\mu$ mol L <sup>-1</sup> phosphate. Phosphate had a main effect on dark                        |
| 187 | respiration rate ( $F_{(4, 20)} = 169.050$ , $P < 0.001$ , Fig. 1b), and it interacted with CO <sub>2</sub> ( $F_{(4, 20)} =$    |
| 188 | 3.226, $P = 0.034$ ). Specifically, LC increased dark respiration rate at 0.05 and 0.25 µmol L <sup>-1</sup>                     |
| 189 | phosphate levels, but did not affect it when phosphate level was above 1 $\mu$ mol L <sup>-1</sup> (LSD, P <                     |
| 190 | 0.05). Regardless of $CO_2$ level, respiration rate increased with phosphate availability and                                    |
| 191 | stopped at 1 $\mu$ mol L <sup>-1</sup> .                                                                                         |
| 192 | The ratio of respiration to photosynthesis ranged from 0.23 to 0.40 (Fig. 2). Both $CO_2$ and                                    |
| 193 | phosphate had a main effect ( $F_{(1, 20)} = 32.443$ , $P < 0.001$ for CO <sub>2</sub> , $F_{(4, 20)} = 7.081$ , $P = 0.001$ for |
| 194 | phosphate), and they interplayed on the ratio of respiration to photosynthesis ( $F_{(4, 20)} = 8.299$ ,                         |
| 195 | P < 0.001). LC increased the ratio when phosphate was lower than 4 µmol L <sup>-1</sup> but did not                              |

196 affect it when phosphate levels were 4 or 10  $\mu$ mol L<sup>-1</sup>.





Both CO<sub>2</sub> and phosphate affected rETR ( $F_{(1, 20)} = 28.717$ , P < 0.001 for CO<sub>2</sub>,  $F_{(4, 20)} =$ 127.860, P < 0.001 for phosphate) and they also showed an interactive effect ( $F_{(4, 20)} = 3.296$ , P = 0.031, Fig. 3). For instance, *post hoc* LSD comparison showed that LC did not affect rETR at lower phosphate levels (0.05 and 0.25 µmol L<sup>-1</sup>) but increased it at higher phosphate levels (1–10 µmol L<sup>-1</sup>). Regardless of CO<sub>2</sub> treatment, rETR increased with phosphate level (0.05–4 µmol L<sup>-1</sup>) but the highest phosphate concentration did not result in a further increase in rETR (LSD, P = 0.05).

205 The content of Chl a was measured to investigate the effects of CO<sub>2</sub> and phosphate on photosynthetic pigment in S. costatum (Fig. 4). Both  $CO_2$  and phosphate affected the 206 synthesis of Chl *a* ( $F_{(1, 20)} = 32.963$ , P < 0.001 for CO<sub>2</sub>,  $F_{(4, 20)} = 92.045$  P < 0.001 for 207 phosphate) and they had an interactive effect ( $F_{(4, 20)} = 3.871$ , P = 0.017). Post hoc LSD 208 comparison (P = 0.05) showed that LC did not affect Chl a at 0.05 or 0.25 µmol L<sup>-1</sup> phosphate 209 but stimulated Chl *a* synthesis at higher phosphate levels  $(1-10 \mu mol L^{-1})$ . Irrespective of CO<sub>2</sub> 210 treatment, Chl a content increased with phosphate level and reached the plateau at 4 µmol L<sup>-1</sup> 211 212 phosphate.

To access the effects of CO<sub>2</sub> and phosphate on photosynthetic CO<sub>2</sub> affinity in *S. costatum*, the net photosynthetic rates of cells exposure to seven levels of DIC were measured (Fig. 5). After curve fitting, the values of  $K_{0.5}$  for CO<sub>2</sub> were calculated (Fig. 6). CO<sub>2</sub> and phosphate interplayed on  $K_{0.5}$  ( $F_{(4, 20)}$  = 3.821, P = 0.018) and each had a main effect ( $F_{(1, 20)}$  = 96.182, P< 0.001 for CO<sub>2</sub>,  $F_{(4, 20)}$  = 40.497, P < 0.001 for phosphate). LC did not affect  $K_{0.5}$  at the lowest phosphate level but reduced it at the other phosphate levels. Under AC, higher phosphate levels (0.25–4 µmol L<sup>-1</sup>) reduced  $K_{0.5}$  and the highest phosphate level led to a





- 220 further decrease in  $K_{0.5}$  compared to 0.05 µmol L<sup>-1</sup> phosphate. The pattern with phosphate
- under LC was the same as the AC.
- 222 3.3. The effects of CO<sub>2</sub> and phosphate on inorganic carbon acquisition

223 To investigate the potential mechanisms that cells overcame  $CO_2$  limitation during algal blooms, the activity of CAext, a CCM related enzyme, was estimated under various CO2 and 224 225 phosphate conditions (Fig. 7a). Both CO<sub>2</sub> ( $F_{(1, 20)} = 569.585$ , P < 0.001) and phosphate ( $F_{(4, 20)}$ ) = 176.392, P < 0.001) had a main effect and they interacted ( $F_{(4, 20)} = 87.380, P < 0.001$ ) on 226  $CA_{ext}$  activity. Post hoc LSD comparison (P = 0.05) showed that LC induced more  $CA_{ext}$ 227 activity under all phosphate conditions except for 0.05 µmol L<sup>-1</sup> levels, compared to AC. 228 Under AC, CA<sub>ext</sub> activity increased with phosphate level and stopped increasing at 1  $\mu$ mol L<sup>-1</sup> 229 phosphate. Under LC, CAext activity also increased with phosphate level but reached the peak 230 at 4 µmol L<sup>-1</sup> phosphate. The redox activity of plasma membrane was also assayed to 231 investigate the factors that modulate CAext activity (Fig. 7b). The pattern of redox activity of 232 plasma membrane under various CO2 and phosphate conditions was the same as that of CAext 233 234 activity. That is, CO<sub>2</sub> and phosphate had an interactive effect ( $F_{(4, 20)} = 137.050$ , P < 0.001) on redox activity of plasma membrane, each having a main effect ( $F_{(1, 20)} = 937.963$ , P < 0.001235 236 for CO<sub>2</sub>;  $F_{(4, 20)} = 276.362$ , P < 0.001 for phosphate).

To test cells' tolerance to high pH and obtain pH compensation points in *S. costatum* grown under various CO<sub>2</sub> and phosphate levels, changes of media pH in a closed system were monitored (Fig. 8). The media pH under all phosphate conditions increased with incubation time ( $F_{(10, 100)} = 7604.563$ , P < 0.001). Specifically speaking, there was a steep increase in pH during the first three hours, afterwards the increase became slower and it reached a plateau in





| 242 | six hours (Bonferroni, $P < 0.05$ ). Phosphate had an interactive effect with incubation time                            |
|-----|--------------------------------------------------------------------------------------------------------------------------|
| 243 | $(F_{(10, 100)} = 47.469, P < 0.001)$ . For instance, there was no significant difference in media pH                    |
| 244 | among phosphate levels during first two hours of incubation but then divergence occurred and                             |
| 245 | they stopped at different points. Two-way ANOVA analysis showed that CO <sub>2</sub> treatment did                       |
| 246 | not affect pH compensation point ( $F_{(1, 20)} = 0.056$ , $P = 0.816$ ) but phosphate had a main effect                 |
| 247 | $(F_{(4,20)} = 226.196, P < 0.001)$ . Under each CO <sub>2</sub> treatment, pH compensation point increased              |
| 248 | with phosphate level, with lowest of 9.03 $\pm 0.03$ at 0.05 $\mu mol \ L^{\text{-1}}$ and highest of 9.36 $\pm 0.04$ at |
| 249 | 10 $\mu$ mol L <sup>-1</sup> phosphate.                                                                                  |

250 4. Discussion

#### 251 4.1. Photosynthetic performances under various CO<sub>2</sub> and phosphate conditions

The lower CO<sub>2</sub> availability reduced the net photosynthetic rate of S. costatum grown at 252 the lower phosphate levels in the present study. However, Nimer et al. (1998) demonstrated 253 that the increase in pH (8.3-9.5) did not reduce photosynthetic CO<sub>2</sub> fixation of S. costatum 254 and Chen and Gao (2004) reported that a higher pH (8.7) even stimulated the photosynthetic 255 256 rate of S. costatum compared to the control (pH 8.2). The divergence between our and the previous studies may be due to different nutrient supply. Both Nimer et al. (1998) and Chen 257 and Gao (2004) used f/2 media to grow algae. The phosphate concentration in f/2 media is 258 ~36  $\mu$ mol L<sup>-1</sup>, which is replete for physiological activities in S. costatum. S. costatum grown 259 at higher phosphate levels (4 and 10  $\mu$ mol L<sup>-1</sup>) also showed comparative photosynthetic rates 260 between the lower and higher  $CO_2$  treatments. Our finding combined with the previous 261 studies indicates phosphorus plays an important role in dealing with low CO<sub>2</sub> availability for 262 263 photosynthesis in S. costatum.



14



264 Different from net photosynthetic rate, LC did not affect rETR at lower phosphate levels (0.05 and 0.25  $\mu$ mol L<sup>-1</sup>) and stimulated it at higher phosphate levels (1–10  $\mu$ mol L<sup>-1</sup>). This 265 interactive effect of CO<sub>2</sub> and phosphate may be due to their effects on Chl a. LC induced 266 267 more synthesis of Chl a at higher phosphate levels  $(1-10 \mu mol L^{-1})$ . This induction of LC on photosynthetic pigment is also reported in green algae (Gao et al., 2016). More energy is 268 269 required under LC to address the more severe  $CO_2$  limitation and thus more Chl a are synthesized to capture more light energy, particularly when phosphate was replete. Although P 270 is not an integral component for chlorophyll, it plays an important role in cell energetics 271 through high-energy phosphate bonds, i.e. ATP, which could support chlorophyll synthesis. 272 The stimulating effect of P enrichment on photosynthetic pigment is also found in green alga 273 Dunaliella tertiolecta (Geider et al., 1998) and brown alga Sargassum muticum (Xu et al., 274 275 2017). The increased photosynthetic pigment in S. costatum could partially explain the increased rETR and photosynthetic rate under the higher P conditions. 276

277 4.2. Ratio of respiration to photosynthesis

278 The ratio of respiration to photosynthesis in algae indicates carbon balance in cells and carbon flux in marine ecosystems as well (Zou & Gao, 2013). LC increased this ratio in S. 279 280 costatum grown at the lower P conditions but did not affect it under the higher P conditions, 281 indicating that P enrichment can offset the carbon loss caused by carbon limitation. To cope 282 with CO<sub>2</sub> limitation, cells might have to obtain energy from dark respiration under lower P conditions as it seems infeasible to acquire energy from the low rETR, which led to the 283 increased dark respiration. However, LC induced higher rETR under P replete conditions and 284 285 energy used for inorganic carbon acquisition could be from the increased rETR. Therefore,





286 additional dark respiration was not triggered, avoiding carbon loss. Most studies regarding the effect of  $CO_2$  on ratio of respiration to photosynthesis focus on higher plants (Gifford, 1995; 287 Ziska & Bunce, 1998; Cheng et al., 2010; Smith & Dukes, 2013), little is known on 288 289 phytoplankton. Our study suggests that CO<sub>2</sub> limitation may lead to carbon loss in phytoplankton but P enrichment could alter this trend, regulating carbon balance in 290 291 phytoplankton and thus their capacity in carbon sequestration. 4.3. Inorganic carbon acquisition under CO<sub>2</sub> limitation and phosphate enrichment 292 293 Decreased CO<sub>2</sub> can usually induce higher inorganic carbon affinity in algae (Raven et al.,

2012; Wu et al., 2012; Raven et al., 2017; Xu et al., 2017). In the present study, the lower 294  $CO_2$  did increase inorganic carbon affinity when P level was higher than 0.25 µmol L<sup>-1</sup> but did 295 not affect it when P was 0.05  $\mu$ mol L<sup>-1</sup>, indicating the important role of P in regulating cells' 296 CCMs in response to environmental CO<sub>2</sub> changes. LC induced larger CA activity when P was 297 above 0.25  $\mu$ mol L<sup>-1</sup> but did not increase it at 0.05  $\mu$ mol L<sup>-1</sup> of P, which could explain the 298 interactive effect of P and CO2 on inorganic carbon affinity as CA can accelerate the 299 300 equilibrium between HCO3<sup>-</sup> and CO2 and increase inorganic carbon affinity. Regardless of CO<sub>2</sub>, P enrichment alone increased CA activity and inorganic carbon affinity. P enrichment 301 302 may stimulate the synthesis of CA by supplying required ATP. In addition, P enrichment 303 increased redox activity of plasma membrane in this study. It has been proposed that redox 304 activity of plasma membrane could induce eextracellular CA activity via protonation extrusion of its active center (Nimer et al., 1998). Our result that the pattern of CA is exactly 305 same as that of redox activity of plasma membrane shows a compelling correlation between 306 307 CA and redox activity of plasma membrane. The stimulating effect of P on redox activity of





| 308 | plasma membrane may be due to its effect on rETR. The increased rETR could generate                                             |
|-----|---------------------------------------------------------------------------------------------------------------------------------|
| 309 | excess reducing equivalents, particularly under CO <sub>2</sub> limited conditions. These excess reducing                       |
| 310 | equivalents would be transported from the chloroplast into the cytosol (Heber, 1974),                                           |
| 311 | supporting the redox chain in the plasma membrane (Rubinstein & Luster, 1993; Nimer et al.,                                     |
| 312 | 1999) and triggering CA activity.                                                                                               |
| 313 | 4.4. Direct $HCO_3^-$ utilization due to phosphate enrichment                                                                   |
| 314 | A pH compensation point over 9.2 has been considered a sign of direct HCO3 <sup>-</sup> use for                                 |
| 315 | algae (Axelsson & Uusitalo, 1988) as CO <sub>2</sub> concentration is nearly zero at pH above 9.2. This                         |
| 316 | criterion has been justified based on the experiments for both micro and macro-algae. For                                       |
| 317 | instance, the marine diatom Phaeodactylum tricornutum, with strong capacity for direct                                          |
| 318 | HCO <sub>3</sub> <sup>-</sup> utilization, has a higher pH compensation point of 10.3 (Chen <i>et al.</i> , 2006). In contrast, |
| 319 | red macroalgae, Lomentaria articulata and Phycodrys rubens that cannot utilize HCO3                                             |
| 320 | directly and photosynthesis only depends on CO <sub>2</sub> diffusion, have pH compensation points of                           |
| 321 | less than 9.2 (Maberly, 1990). In terms of S. costatum, it has been reported to have a pH                                       |
| 322 | compensation point of 9.12, indicating a very weak capacity in direct HCO <sub>3</sub> <sup>-</sup> utilization (Chen           |
| 323 | & Gao, 2004). Our study demonstrates that the pH compensation point of S. costatum varies                                       |
| 324 | with the availability of P. It is lower than 9.2 under P limiting conditions but higher than 9.2                                |
| 325 | under P replete conditions, suggesting that the capacity of direct HCO <sub>3</sub> <sup>-</sup> utilization is regulated       |
| 326 | by P availability. Contrary to $CO_2$ passive diffusion, the direct use of $HCO_3^-$ depends on                                 |
| 327 | positive transport that requires energy (Hopkinson & Morel, 2011). P enrichment increased                                       |
| 328 | rETR in the present study and the ATP produced during the process of electron transport could                                   |
| 329 | be used to support $HCO_3^-$ positive transport. In addition, the increased respiration at higher P                             |





17

- levels can also generate ATP to help  $HCO_3^-$  positive transport. Our study indicates that P enrichment could trigger  $HCO_3^-$  direct utilization and hence increase inorganic acquisition capacity of *S. costatum* to cope with  $CO_2$  limitation.
- 333 *4.5. CCMs and red tides*

With the development of red tides, the pH in seawater could be very high along with 334 335 extremely low CO<sub>2</sub> availability due to intensive photosynthesis (Hansen, 2002; Hinga, 2002). For instance, pH level in the surface waters of the eutrophic Mariager Fjord, Denmark, is 336 often above 9 during dinoflagellate blooms (Hansen, 2002). Diatoms are the casautive species 337 for red tides and S. costatum could outcompete other bloom algae (dinoflagellates 338 Prorocentrum minimum and Alexandrium tamarense) under nutrient replete conditions (Hu et 339 al., 2011). However, potential mechanisms are poorly understood. Our study demonstrates S. 340 341 costatum has multiple CCMs to cope with  $CO_2$  limitation and the operation of CCMs is regulated by P availability. The CCMs of S. costatum is hampered under P limiting conditions 342 and only function when P is replete. Therefore, P enrichment would be critical for S. costatum 343 344 to overcome carbon limitation during algal bloom and to dominate red tides.

345 5. Conclusions

The present study investigated the role of P in regulating inorganic carbon acquisition and CO<sub>2</sub> concentrating mechanisms in diatoms for the first time. The intensive photosynthesis and quick grow during algal blooms usually result in noticeable increase of pH and decrease of CO<sub>2</sub>. Our study demonstrates that P enrichment could induce activity of extracellular carbonic anhydrase and direct utilization of  $HCO_3^-$  in *S. costatum* to help overcome the CO<sub>2</sub> limitation, as well as increasing photosynthetic pigment content and rETR to provide required energy.





- 352 This study provides important insight into the connection of phosphorus and carbon
- acquisition in diatoms and the mechanisms that *S. costatum* dominates algal blooms.

### 354 Author contribution

JX and GG designed the experiments, and GG, JY, JF and XZ carried them out. GG prepared the manuscript with contributions from all co-authors.

### 357 Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 41376156 & 40976078), Natural Science Fund of Guangdong Province (No. S2012010009853), Science and Technology Bureau of Lianyungang (SH1606), Jiangsu Planned Projects for Postdoctoral Research Funds (1701003A), Science Foundation of Huaihai Institute of Technology (Z2016007), and

363 Foundation for High-level Talents in Higher Education of Guangdong.

## 364 **References**

- 365 Anderson DM, Burkholder JM, Cochlan WP, Glibert PM, Gobler CJ, Heil CA, Kudela
- R, Parsons ML, Rensel JE, Townsend DW. 2008. Harmful algal blooms and
  eutrophication: Examining linkages from selected coastal regions of the United States. *Harmful Algae* 8: 39-53.
- Axelsson L, Uusitalo J. 1988. Carbon acquisition strategies for marine macroalgae. *Marine Biology* 97: 295-300.
- Barton AD, Irwin AJ, Finkel ZV, Stock CA. 2016. Anthropogenic climate change drives
   shift and shuffle in North Atlantic phytoplankton communities. *Proceedings of the National Academy of Sciences, USA* 113: 2964-2969.





| Bea | amud SG, Baffico GD, Reid B, Torres R, Gonzalez-Polo M, Pedrozo F, Diaz M. 2016.                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
|     | Photosynthetic performance associated with phosphorus availability in mats of                                               |
|     | Didymosphenia geminata (Bacillariophyceae) from Patagonia (Argentina and Chile).                                            |
|     | <i>Phycologia</i> <b>55</b> : 118-125.                                                                                      |
| Bea | ardall J, Roberts S, Raven JA. 2005. Regulation of inorganic carbon acquisition by                                          |
|     | phosphorus limitation in the green alga Chlorella emersonii. Canadian Journal of                                            |
|     | <i>Botany</i> <b>83</b> : 859-864.                                                                                          |
| Be  | rg GM, Glibert PM, Lomas MW, Burford MA. 1997. Organic nitrogen uptake and                                                  |
|     | growth by the chrysophyte Aureococcus anophagefferens during a brown tide event.                                            |
|     | Marine Biology <b>129</b> : 377-387.                                                                                        |
| Bro | embu T, Mühlroth A, Alipanah L, Bones AM. 2017. The effects of phosphorus limitation                                        |
|     | on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B                                          |
|     | Biological Sciences 372: 20160406.                                                                                          |
| Br  | uland KW, Rue EL, Smith GJ. 2001. Iron and macronutrients in california coastal                                             |
|     | upwelling regimes: implications for diatom blooms. Limnology and Oceanography 46:                                           |
|     | 1661-1674.                                                                                                                  |
| Ca  | emmerer SV, Farquhar GD. 1981. Some relationships between the biochemistry of                                               |
|     | photosynthesis and the gas exchange of leaves. Planta 153: 376-387.                                                         |
| Ch  | en X, Gao K. 2004. Photosynthetic utilisation of inorganic carbon and its regulation in the                                 |
|     | marine diatom Skeletonema costatum. Functional Plant Biology 31: 1027-1033.                                                 |
| Ch  | en X, Qiu CE, Shao JZ. 2006. Evidence for K <sup>+</sup> -dependent HCO <sub>3</sub> <sup>-</sup> utilization in the marine |
|     | diatom Phaeodactylum tricornutum. Plant Physiology 141: 731-736.                                                            |





| -   |                                                                                                              |
|-----|--------------------------------------------------------------------------------------------------------------|
| Ch  | eng W, Sims DA, Luo Y, Coleman JS, Johnson DW. 2010. Photosynthesis, respiration,                            |
|     | and net primary production of sunflower stands in ambient and elevated atmospheric                           |
|     | CO <sub>2</sub> concentrations: an invariant NPP:GPP ratio? <i>Global Change Biology</i> <b>6</b> : 931-941. |
| Da  | vies AG, Sleep JA. 1989. The photosynthetic response of nutrient-depleted dilute cultures                    |
|     | of Skeletonema costatum to pulses of ammonium and nitrate; the importance of                                 |
|     | phosphate. Journal of Plankton Research 11: 141-164.                                                         |
| Die | <b>ckson AG. 1990.</b> Standard potential of the reaction: $AgCl(s) + 12H2(g) = Ag(s) + HCl(aq)$ ,           |
|     | and the standard acidity constant of the ion $HSO_4^-$ in synthetic sea water from 273.15                    |
|     | to 318.15 K. Journal of Chemical Thermodynamics 22: 113-127.                                                 |
| Fa  | kowski P. 2012. Ocean Science: The power of plankton. Nature 483: 17-20.                                     |
| Fie | eld CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the                            |
|     | biosphere: integrating terrestrial and oceanic components. Science 281: 237-240.                             |
| Ga  | o G, Gao K, Giordano M. 2009. Responses to solar UV radiation of the diatom                                  |
|     | Skeletonema costatum (Bacillariophyceae) grown at different Zn <sup>2+</sup> concentrations                  |
|     | Journal of Phycology 45: 119-129.                                                                            |
| Ga  | o G, Liu Y, Li X, Feng Z, Xu J. 2016. An ocean acidification acclimatised green tide alga                    |
|     | Is robust to changes of seawater carbon chemistry but vulnerable to light stress. PloS                       |
|     | <i>One</i> <b>11</b> : e0169040.                                                                             |
| Ge  | ider RJ, Macintyre HL, Graziano LM, McKay RML. 1998. Responses of the                                        |
|     | photosynthetic apparatus of Dunaliella tertiolecta (Chlorophyceae) to nitrogen and                           |
|     | phosphorus limitation. European Journal of Phycology 33: 315-332.                                            |
| Gi  | ford RM. 1995. Whole plant respiration and photosynthesis of wheat under increased CO <sub>2</sub>           |
|     |                                                                                                              |





| 2 | 1 |
|---|---|
|   |   |

- 418 concentration and temperature: long-term vs. short-term distinctions for modelling.
- 419 *Global Change Biology* **1**: 385–396.
- 420 Hansen PJ. 2002. Effect of high pH on the growth and survival of marine phytoplankton:
- 421 implications for species succession. *Aquatic Microbial Ecology* **28**: 279-288.
- 422 Heber U. 1974. Metabolite exchange between chloroplasts and cytoplasm. Annual Review of
- 423 *Plant Physiology* **25**: 393-421.
- 424 Hinga KR. 2002. Effects of pH on coastal marine phytoplankton. *Marine Ecology Progress*
- 425 *Series* **238**: 281-300.
- 426 Hopkinson BM, Dupont CL, Matsuda Y. 2016. The physiology and genetics of CO<sub>2</sub>
- 427 concentrating mechanisms in model diatoms. *Current Opinion in Plant Biology* 31:
  428 51-57.
- 429 Hopkinson BM, Morel FMM. 2011. Efficiency of the CO<sub>2</sub>-concentrating mechanism of
- diatoms. *Proceedings of the National Academy of Sciences, USA* **108**: 3830-3837.
- Hu H, Zhang J, Chen W. 2011. Competition of bloom-forming marine phytoplankton at low
  nutrient concentrations. *Journal of Environmental Sciences* 23: 656-663.
- 433 Hu H, Zhou Q. 2010. Regulation of inorganic carbon acquisition by nitrogen and phosphorus
- 434 levels in the *Nannochloropsis* sp. *World Journal of Microbiology & Biotechnology* 26:
  435 957-961.
- 436 Jeong HJ, An SL, Franks PJS, Lee KH, Ji HK, Kang NS, Lee MJ, Jang SH, Lee SY,
- 437 Yoon EY. 2015. A hierarchy of conceptual models of red-tide generation: Nutrition,
  438 behavior, and biological interactions. *Harmful Algae* 47: 97-115.
- 439 Jiang X, Han Q, Gao X, Gao G. 2016. Conditions optimising on the yield of biomass, total





| 440 | lipid, and valuable fatty acids in two strains of Skeletonema menzelii. Food Chemistry   |
|-----|------------------------------------------------------------------------------------------|
| 441 | <b>194</b> : 723-732.                                                                    |
| 442 | Li G, Gao K, Yuan D, Zheng Y, Yang G. 2011. Relationship of photosynthetic carbon        |
| 443 | fixation with environmental changes in the Jiulong River estuary of the South China      |
| 444 | Sea, with special reference to the effects of solar UV radiation. Marine Pollution       |
| 445 | Bulletin 62: 1852-1858.                                                                  |
| 446 | Lin S, Litaker RW, Sunda WG. 2016. Phosphorus physiological ecology and molecular        |
| 447 | mechanisms in marine phytoplankton. Journal of Phycology 52: 10.                         |
| 448 | Liu Y, Song X, Cao X, Yu Z. 2012. Responses of photosynthetic characters of Skeletonema  |
| 449 | costatum to different nutrient conditions. Journal of Plankton Research 35: 165-176.     |
| 450 | Maberly SC. 1990. Exogenous sources of inorganic carbon for photosynthesis by marine     |
| 451 | macroalgae. Journal of Phycology 26: 439-449.                                            |
| 452 | Mccall SJ, Hale MS, Smith JT, Read DS, Bowes MJ. 2017. Impacts of phosphorus             |
| 453 | concentration and light intensity on river periphyton biomass and community structure.   |
| 454 | <i>Hydrobiologia</i> <b>792</b> : 315-330.                                               |
| 455 | Moore CM, Mills MM, Arrigo KR, Bermanfrank I, Bopp L, Boyd PW, Galbraith ED,             |
| 456 | Geider RJ, Guieu C, Jaccard SL. 2013. Processes and patterns of oceanic nutrient         |
| 457 | limitation. <i>Nature Geoscience</i> <b>6</b> : 701-710.                                 |
| 458 | Müller S, Mitrovic SM. 2015. Phytoplankton co-limitation by nitrogen and phosphorus in a |
| 459 | shallow reservoir: progressing from the phosphorus limitation paradigm.                  |
| 460 | Hydrobiologia <b>744</b> : 255-269.                                                      |
| 461 | Nelson DM, Tréguer P, Brzezinski MA, Leynaert A, Quéguiner B. 1995. Production and       |





| 462 | dissolution of biogenic silica in the ocean: Revised global estimates, comparison with       |
|-----|----------------------------------------------------------------------------------------------|
| 463 | regional data and relationship to biogenic sedimentation. Global Biogeochemical              |
| 464 | <i>Cycles</i> <b>9</b> : 359-372.                                                            |
| 465 | Nimer NA, Ling MX, Brownlee C, Merrett MJ. 1999. Inorganic carbon limitation,                |
| 466 | exofacial carbonic anhydrase activity, and plasma membrane redox activity in marine          |
| 467 | phytoplankton species. Journal of Phycology 35: 1200-1205.                                   |
| 468 | Nimer NA, Warren M, Merrett MJ. 1998. The regulation of photosynthetic rate and              |
| 469 | activation of extracellular carbonic anhydrase under CO2-limiting conditions in the          |
| 470 | marine diatom Skeletonema costatum. Plant Cell and Environment 21: 805-812.                  |
| 471 | Pierrot D, Lewis E, Wallace DWR. 2006. MS Excel program developed for CO <sub>2</sub> system |
| 472 | calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak               |
| 473 | Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee.                    |
| 474 | Raven JA, Beardall J, Sánchez-Baracaldo P. 2017. The possible evolution, and future, of      |
| 475 | CO2-concentrating mechanisms. Journal of Experimental Botany.                                |
| 476 | Raven JA, Giordano M, Beardall J, Maberly SC. 2012. Algal evolution in relation to           |
| 477 | atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon                    |
| 478 | oxidation cycles. Phil. Trans. R. Soc. B 367: 493-507.                                       |
| 479 | Reed ML, Pinckney JL, Keppler CJ, Brock LM, Hogan SB, Greenfield DI. 2016. The               |
| 480 | influence of nitrogen and phosphorus on phytoplankton growth and assemblage                  |
| 481 | composition in four coastal, southeastern USA systems. Estuarine Coastal & Shelf             |
| 482 | <i>Science</i> <b>177</b> : 71-82.                                                           |
| 483 | Rost B, Riebesell U, Burkhardt S, Sültemeyer D. 2003. Carbon acquisition of                  |





| 484 | bloom-forming marine phytoplankton. Limnology and Oceanography 48: 55-67.                                      |
|-----|----------------------------------------------------------------------------------------------------------------|
| 485 | Roy RN, Roy LN, Vogel KM, Porter-Moore C, Pearson T, Good CE, Millero FJ,                                      |
| 486 | Campbell DM. 1993. The dissociation constants of carbonic acid in seawater at                                  |
| 487 | salinities 5 to 45 and temperatures 0 to 45°C. Marine Chemistry 44: 249-267.                                   |
| 488 | Rubinstein B, Luster DG. 1993. Plasma membrane redox activity: components and role in                          |
| 489 | plant processes. Annual Review of Plant Biology 44: 131-155.                                                   |
| 490 | Smetacek V, Zingone A. 2013. Green and golden seaweed tides on the rise. Nature 504:                           |
| 491 | 84-88.                                                                                                         |
| 492 | Smith NG, Dukes JS. 2013. Plant respiration and photosynthesis in global-scale models:                         |
| 493 | incorporating acclimation to temperature and CO <sub>2</sub> . <i>Global Change Biology</i> <b>19</b> : 45-63. |
| 494 | Wang J. 2002. Phytoplankton communities in three distinct ecotypes of the Changjiang                           |
| 495 | estuary. Journal of Ocean University of China 32: 422-428.                                                     |
| 496 | Wu H, Gao K. 2009. Ultraviolet radiation stimulated activity of extracellular carbonic                         |
| 497 | anhydrase in the marine diatom Skeletonema costatum. Functional Plant Biology 36:                              |
| 498 | 137-143.                                                                                                       |
| 499 | Wu X, Gao G, Giordano M, Gao K. 2012. Growth and photosynthesis of a diatom grown                              |
| 500 | under elevated CO <sub>2</sub> in the presence of solar UV radiation. Fundamental and Applied                  |
| 501 | <i>Limnology</i> <b>180</b> : 279-290.                                                                         |
| 502 | Xu Z, Gao G, Xu J, Wu H. 2017. Physiological response of a golden tide alga (Sargassum                         |
| 503 | muticum) to the interaction of ocean acidification and phosphorus enrichment.                                  |
| 504 | Biogeosciences 14: 671-681.                                                                                    |

505 Young JN, Morel FMM. 2015. Biological oceanography: The CO<sub>2</sub> switch in diatoms. *Nature* 





| 2 | 5 |
|---|---|
| ~ | 9 |

| 506 | Climate Change 5: 722-723.                                                                   |
|-----|----------------------------------------------------------------------------------------------|
| 507 | Ziska LH, Bunce JA. 1998. The influence of increasing growth temperature and CO <sub>2</sub> |
| 508 | concentration on the ratio of respiration to photosynthesis in soybean seedlings.            |
| 509 | Global Change Biology 4: 637-643.                                                            |
| 510 | Zou D, Gao K. 2013. Thermal acclimation of respiration and photosynthesis in the marine      |
| 511 | macroalga Gracilaria lemaneiformis (Gracilariales, Rhodophyta). Journal of                   |
| 512 | <i>Phycology</i> <b>49</b> : 61–68.                                                          |
| 513 |                                                                                              |





| 514 | Figure legends                                                                                             |
|-----|------------------------------------------------------------------------------------------------------------|
| 515 | Fig. 1. Net photosynthetic rate (a) and dark respiration rate (b) in S. costatum grown at                  |
| 516 | various phosphate concentrations after ambient (AC) and low $CO_2$ (LC) treatments. The error              |
| 517 | bars indicate the standard deviations ( $n = 3$ ). Different letters represent the significant             |
| 518 | difference ( $P < 0.05$ ) among phosphate concentrations (capital for AC, lower case for LC).              |
| 519 | Horizontal lines represent significant difference ( $P < 0.05$ ) between CO <sub>2</sub> treatments.       |
| 520 | Fig. 2. Ratio of respiration rate to net photosynthetic rate in S. costatum grown at various               |
| 521 | phosphate concentrations after ambient (AC) and low $CO_2$ (LC) treatments. The error bars                 |
| 522 | indicate the standard deviations ( $n = 3$ ). Different letters represent the significant difference ( $P$ |
| 523 | < 0.05) among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines               |
| 524 | represent significant difference ( $P < 0.05$ ) between CO <sub>2</sub> treatments.                        |
| 525 | Fig. 3. Relative electron transport rate (rETR) in S. costatum grown at various phosphate                  |
| 526 | concentrations after ambient (AC) and low $CO_2$ (LC) treatments. The error bars indicate the              |
| 527 | standard deviations (n = 3). Different letters represent the significant difference ( $P < 0.05$ )         |
| 528 | among phosphate concentrations (Capital for AC lower case for LC). Horizontal lines                        |
| 529 | represent significant difference ( $P < 0.05$ ) between CO <sub>2</sub> treatments.                        |
| 530 | Fig. 4. Photosynthetic Chl a content in S. costatum grown at various phosphate concentrations              |
| 531 | after ambient (AC) and low $CO_2$ (LC) treatments. The error bars indicate the standard                    |
| 532 | deviations (n = 3). Different letters represent the significant difference ( $P < 0.05$ ) among            |
| 533 | phosphate concentrations (capital for AC, lower case for LC). Horizontal lines represent                   |
| 534 | significant difference ( $P < 0.05$ ) between CO <sub>2</sub> treatments.                                  |

535 Fig. 5. Net photosynthetic rate as a function of DIC for *S. costatum* grown at various





- 536 phosphate concentrations after ambient (a) and low CO<sub>2</sub> (b) treatments. The error bars
- 537 indicate the standard deviations (n = 3).
- **Fig. 6.** Half saturation constant ( $K_{0.5}$ ) for CO<sub>2</sub> in *S. costatum* grown at at various phosphate
- concentrations after ambient (AC) and low  $CO_2$  (LC) treatments. The error bars indicate the
- standard deviations (n = 3). Different letters represent the significant difference (P < 0.05)
- 541 among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines
- represent significant difference (P < 0.05) between CO<sub>2</sub> treatments.
- 543 Fig. 7. CA<sub>ext</sub> activity (a) and reduction rate of ferricyanide (b) in *S. costatum* grown at various
- 544 phosphate concentrations after ambient (AC) and low CO<sub>2</sub> (LC) treatments. The error bars
- indicate the standard deviations (n = 3). Different letters represent the significant difference (P
- < 0.05) among phosphate concentrations (capital for AC, lower case for LC). Horizontal lines
- represent significant difference (P < 0.05) between CO<sub>2</sub> treatments.
- 548 Fig. 8. Changes of pH in a closed system caused by photosynthesis of *S. costatum* grown at
- various phosphate concentrations after ambient (AC) and low  $CO_2$  (LC) treatments. The error
- 550 bars indicate the standard deviations (n = 3).







551 552

Fig. 1

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

![](_page_28_Figure_3.jpeg)

Fig. 2

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Figure_3.jpeg)

Fig. 3

![](_page_30_Picture_1.jpeg)

![](_page_30_Picture_2.jpeg)

![](_page_30_Figure_3.jpeg)

Fig. 4

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_31_Figure_3.jpeg)

Fig. 5

![](_page_32_Picture_1.jpeg)

![](_page_32_Picture_2.jpeg)

![](_page_32_Figure_3.jpeg)

Fig. 6

![](_page_33_Picture_1.jpeg)

34

![](_page_33_Picture_2.jpeg)

![](_page_33_Figure_3.jpeg)

563

Fig. 7

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

![](_page_34_Figure_3.jpeg)

- 566
- 567
- 568